

© CNS Inc.

Teseq - Schaffner Profline 2145-EOS

Harmonics - Flicker Test System Calibration & Verification Report

for

Xxxxxxx P.O.156688

July 19-25, 2018 Mathieu van den Bergh

Computer & Networking Services Inc. Crystal View Lane – Poway CA 92064 Tel: 858-486-4707 Calibration Lab. 12625 # 112 Danielson Ct. - Poway CA 9206 www.cnspoway.com

© CNS Inc.

Summary of calibration activities, conclusions & recommendations, July 19-25 - 2018

1: Calibration and software update activities

The system for XXX was sent to San Diego for upgrade and calibration- the Profline 2145 system was inspected, and the calibration was verified.

The systems upgrade added a NSG2200-3 Dip switch for IEC61000-4-11 testing, power source upgrade (with new firmware) and regeneration option.

The initial data, which included verification of the power source output voltage levels was found to be well within permitted tolerances. Subsequently, a series of tests were run to verify that the system complies very well with the tolerances as required per the applicable IEC61000-3-2, IEC61000-3-3, IEC 61000-3-11, and 61000-3-12 standards, and the IEC 61000-4-7 and IEC61000-4-15 measurement standards. It was noticed, while running flicker tests the system was out of tolerance and needed to be adjusted. Once adjusted and verified all tests and tolerances were within the permitted values. Furthermore, the power source voltage linearity and frequency accuracy was verified, and found to be excellent, and well within the required tolerances per IEC 61000-4-14, and IEC 61000-4-28. Detailed data for the tests is provided in this report. In addition, performance per IEC61000-11 and IEC61000-4-13, IEC 61000-4-14 and IEC 61000-4-28 was verified. Note that the IEC 61000-4-11 tests also apply to IEC 61000-4-34.

Versions of WIN2100V4 (4.14) and WIN2106V2 (2.14) software was installed, and in part used to run the foregoing tests. The existing WIN2100V3 and WIN2106 software versions were left intact, as they are needed to replay existing tests data files. The newer software versions have slightly different data formats, and thus cannot replay older test data files.

2: Calibration equipment and ISO-17025 traceable calibration data

The list of primary test equipment, along with ISO-17025 traceable calibration certificate numbers is provided on page 3 of this report. Copies of calibration certificates can be provided upon request.

3: Conclusions and recommendations

Given the overall system performance, all measured parameters are well within permitted tolerances, and new calibration stickers were attached to the system. The calibration interval is at the discretion of the system user.

CNS Inc. will maintain copies of the updated calibration files, which are located in the root directory of the PC. It is recommended that the system user also make copies of the calibration files.

Mathieu van den Bergh - CNS Inc. August 4, 2018

© CNS Inc.

System inspection & calibration activities, July 21-25, 2018

System inspection, software update and detailed tests

Upon arrival at Ametek San Diego, the 45 kVA - 3 phase Profline 2145 compliance test system was inspected for functionality and overall operability after upgrade. All measurements were well within their respective tolerances after flicker measurements were adjusted.

Version WIN2100V4.14 and WIN2106V2.14 software were installed. The existing versions were left intact, as they are needed to re-play existing data files. The latest version of WIN2100V4 updated the test reports to reference the latest editions of IEC 61000-3-2 (Ed. 4 - 2014) and IEC 61000-3-3 (Ed. 3 - 2013).

Overall voltage and current measurement accuracy was verified at multiple levels. Next, a series of harmonics and Flicker tests were run, including various test classes per IEC 61000-3-2, and a test per IEC 61000-3-12 Table-2. Flicker tests were run using the 18 Amp "Z-ref" impedance, as well as the 75 Amp "Z-test" impedance. While running these tests it was noticed that the impedance was just out of tolerance for both impedance units (partially due to the added wiring in the system from upgrade.). Once adjusted multiple tests were ran and was then found to be well within the permitted tolerances. Frequency accuracy in accordance with IEC61000-4-28 and voltage fluctuations in accordance with IEC 61000-4-14 were also verified. The latest version of the MXGUI software to control the 45 kVA power source was installed on the user's PC.

The system consists of the following building blocks; Dell Precision PC with Intel i3 dual core processor, with Windows-7 Professional. NSG-1007-45, 45 kVA power source s/n 1143A04873 Firmware version 5.40. CCN-1000-3, 3 phase Signal conditioner unit, s/n 1143A04873 INA 2175 / OMNI-3-75i, 3 phase Reference Impedance with IEC61000-3-11 Z-test values, s/n 1143A04873 OMNI-3-18, 3 phase reference impedance per IEC-TR-60725 for IEC61000-3-3 testing s/n X71117 NSG2200-3 dip switch s/n EKA45995 NI-M series A/D card s/n1599673 (installed in PC)

Temperature during calibration: 22 °C ± 2 °C Humidity during calibration: 55 % RH ± 5 %

Calibration equipment used:

Model #	Serial #	Equipment type	ISO Trace #	Cal due date
7003-257	0724	Current shunt 36A	BL7118	2/07/2019
10 mV/A	NA	Current shunt 100A	CV4560	2/07/2019
Fluke 8846A	1998007	6.5 Digit Multimeter	CT5792	6/13/2020
Agilent 34410A	MY45002306	6.5 Digit Multimeter,	BL2709	2/16/2019
TDS2004B	C011624	Digital storage scope	CN7004	2/15/2019
DS6062V	1301058	Digital storage scope	AX6160	2/16/2019
570A	103381623	Handheld DVM	CN7003	2/15/2019
HFCIII	1406	Calibrator	NA- verified w	vith above equipment

Profline 2145 System Calibration Test Data-voltage and current accuracy

Note: The voltage reference readings were made at the output terminals, on the front of the system. Thus, there is a small voltage drop compared to the measurement point of the CCN1000-3. The impedances were set to bypass mode for the voltage and current measurements listed below. The system performance is excellent as evidenced by the test data, with only minor deviations compared to the permitted tolerances per standards.

NRW EMO				ofline 2145			
)V4 (<16	Amp) and	WIN2106V	2 > 16 An	ıp	
July 19-25	2018						
hase-Ada		Profl				Profl	
Reference		error %	Reference		Profl	error %	
DVM-1	Voltage	voltage	DVM-2	Current	Current	Current	
000.050		0.047	100 mV/an		4 00 4		
229.952	230.06	0.047	0.1000	1.000	1.001	1 mA	
229.939	230.05	0.048	0.2000	2.000	1.998	-0.100	
229.622	229.97	0.152	0.5000	5.000	5.003	0.060	
229.303	229.87	0.247	1.0000	10.000	10.001	0.010	
228.800	229.75	0.415	1.6000	16.000	16.000	0.000	
227.700	229.37	0.733	3.0000	30.000	29.924	-0.253	
226.973	229.18	0.972	4.0000	40.000	39.900	-0.250	
226.122	228.90	1.229	5.0000	50.000	49.684	-0.632	
Phase-B da	ta						
Reference		error %	Reference		Profl	error %	
DVM-1	Voltage	voltage	DVM-2	Current	Current	Current	
	Voltago	vonago	100 mV/an		ourroint	ourroine	
229.941	230.09	0.065	0.1000	1.000	1.000	0.000	
229.939	230.09	0.066	0.2000	2.000	1.997	-0.150	
229.726	230.04	0.137	0.5000	5.000	4.997	-0.060	
229.269	229.91	0.280	1.0000	10.000	9.997	-0.030	
228.780	229.79	0.441	1.6000	16.000	15.995	-0.031	
227.697	229.47	0.779	3.0000	30.000	29.904	-0.320	
226.947	229.22	1.002	4.0000	40.000	39.853	-0.367	
226.220	228.99	1.224	5.0000	50.000	49.817	-0.366	
hase-C da							
Reference		error %	Reference		Profl	error %	
DVM-1	Voltage	voltage	DVM-2	Current	Current	Current	
000.001	000.00		100 mV/an		4 000		
229.961	230.09	0.056	0.1000	1.000	1.000	0.000	
229.861	230.06	0.087	0.2000	2.000	2.001	0.050	
229.660	229.99	0.144	0.5000	5.000	5.000	0.000	
229.288	229.90	0.267	1.0000	10.000	10.002	0.020	
228.804	229.76	0.418	1.6000	16.000	16.001	0.006	
228.482	229.39	0.397	3.0000	30.000	29.908	-0.307	
226.924	229.15	0.981	4.0000	40.000	39.897	-0.257	
226.231	228.91	1.184	5.0000	50.000	49.846	-0.308	
Measuren	nent uncer	tainty:		Voltage	+/- 0.1 %		
(evaluation	method pe	er ISO-1702	5 - K=2)	Current	+/- 0.15 %	6	
Permitted	errors in	standards	Harmonics	IEC61000-3	-2	+/- 5% or	+/- 5 mA
				C61000-4-7		+/- 5%	
				61000-3-3 "I	Pst"	+/- 8 %	
						-7-070	

Table-1 Overall voltage & Current data as found and as left

Profline System Calibration, xxxxxx- Dortmund, July. 2018 4 of 22

© CNS Inc.

Flicker test	t results per ll	EC61000-3-3		
Phase	Modulation	Target	Actual	error
	Freq.	Pst	Pst	%
А	0.058 Hz	1.186	1.183	-0.25
В	0.325 Hz	0.813	0.801	-1.48
С	0.917 Hz	1.006	0.99	-1.59
А	13.5 Hz	1.209	1.216	0.58
Flicker test	t results per ll	EC 61000-3-	11	
А	0.058 Hz	0.747	0.756	1.20
В	0.325 Hz	0.511	0.522	2.15
С	0.917 Hz	0.663	0.655	-1.21
А	13.5 Hz	0.819	0.813	-0.73
Permitted	errors in stan	dards:		
Flicker IEC6	61000-3-3 and	61000-3-11		+/- 8 %
	uctuations tes		-4-14	
	tage; 230.0 V-	rms		.
Programm	•		Actual	Deviation
+8%	248.4		248.35	-0.02%
-8%	211.6		211.58	-0.01%
+ 12 %	257.6		257.61	0.00%
- 12 %	202.4		202.33	-0.03%
	accuracy an		IEC 6100	
Programm	ed	Actual		Deviation
50.00		50.0001		0%
60.00		60.0000		0%
47.00		46.9999		0%
53.00		53.0000		0%
63.00		63.0001		0%

Table-2 Flicker tests after adjustments were made and voltage fluctuation and frequency accuracy data

Voltage level, frequency accuracy and modulation and voltage variation are also included in the above Table-2 to provide testing per IEC61000-4-14 and -28. Data per IEC61000-4-11 and IEC 61000-4-13 can be found on pages 16 -20..

Voltage & Current Calibration files

The calibration file is named "CTSMXH calibration.dat" for Win2106, and "CTS Calibration.dat" for the WIN2100V3 and WIN2100V4 software (for IEC61000-3-2 and 61000-3-3 testing). Back-up copies are maintained by CNS Inc. but the user should also make copies. If the Profline program needs to be re-installed, or the PC hard drive is upgraded, the calibration file will be required. The file contents are shown below, and can be used to recreate the file if so required.

The "calibration.log" file (see next page) shows the various parameters that were used, and recorded, during the calibration process. The values of the calibration factors show that the hardware is close to the ideal accuracies. For voltage and the current high range the software correction factors are very close to 1.000, while the factors for the middle and high current ranges are close to the ideal 1.333. Hence, this permits the conclusion that the hardware is highly accurate, and requires only minor corrections via the software calibration factors.

Contents of the

"CTSMXH calibration.dat" file;

CTSMXH calibration.dat - Notepad	
<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp	
<pre>["1599673","12/03/2014","10:31:54 AM" 100 , 40 , 8 , 2 , 100 , 40 , 8 , 2 , 100 , 40 , 8 , 2 , 1 , 1 39 , 26 , 41 , 41 , 44 , 47 , 42 , 42 , 42 , 27 , 42 , 42</pre>	0,0,0,0 08649E-04 7957E-04, 379E-04,

	CTS calibration.dat - Notepad
	<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp
	"1599673","12/3/2014","10:10:05 AM" 100 , 40 , 8 , 2 , 100 , 40 , 8 , 2 , 100 , 40 , 8 , 2 , 1 , 1 , 1 , 1 39 , 36 , 41 , 40 , 45 , 39 , 41 , 41 , 41 , 27 , 42 , 41 , 0 , 0 , 0 , 0 1.608826E-04 , 1.614602E-04 , 2.172518E-04 , 2.16745E-04 , 1.60831E-04 , 1.613395E-04 , 2.184618E-04 , 2.178713E-04 , 1.609534E-04 , 1.60897E-04 ,
9	2.172148E-04 , 2.171376E-04 , 1.525879E-04 , 1.525877E-04 , 1.525877E-04 , 1.525877E-04 , 1.525877E-04 , 1.5258
on.dat"	0, 400, 796, 400, 370, 400, 796, 400, 796, 240, 477, 190, 230, 240 , 477, 240, 477
	sn 1143A04873 NSG1007-45 Mathieu- CNS Inc File updated Dec.3, 2014

Contents of the

"CTS calibration.dat" file;

Calibrate.log file

File Edit	Format	<u>View</u> <u>H</u> elp				
alibrat		Contraction of the second				
Source i	informat	l number: tion: NSG ne by: Mat	1007-45			
Date: 12 Card Typ Base Fre	be: NI-M	14 M Series I (Hz): 199	DAQ_Card 999671	PCI-625	D	Time: 10:31:54 AM Card SN: 1599673
Current	transf	m: Externa ormer soun ale (Amps,	rce: Inte	ernal		
Impedanc	e valu					
		R-1(mO)	L-1(uH)	R-3(mO)	L-3(uH)	
European		250 400	796 370	150	477 230	
Japanese American		90	159		318	
Customer	13	400	796	190	140	
Calibrat	ion va	lues:	d-d-d-d-d-d-d-d-d-d-			
chan DC((pts) M	easured(v				itivity(mv/pt)
Chan DC(0 3 1 2	(pts) M 39 26	easured(v, 230.335 30		1.00039		.1609614 .1612156
Chan DC(0 3 1 2	(pts) M 39 26 11	easured(V, 230.335 30 20 8		1.00039		.1609614
Chan DC (0 3 1 2 2 4 3 4 4 4	(pts) M 39 26 11 14	easured(V, 230.335 30 20 8 230.271		1.00039 1.00197 1.35025 1.34848		.1609614 .1612156 .2172534 .2169686 .1608649
Chan DC (0 3 1 2 2 4 3 4 4 4	(pts) M 39 26 11 14	easured(V, 230.335 30 20 8 230.271		1.00039 1.00197 1.35025 1.34848		.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537
Chan DC (0 3 1 2 2 4 3 4 4 4	(pts) M 39 26 11 14	easured(V, 230.335 30 20 8 230.271		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525		.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537 .2184537
Chan DC (0 3 1 2 2 4 3 4 4 4	(pts) M 39 26 11 14	easured(V, 230.335 30 20 8 230.271		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936		.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537 .2180579 .1609614 .1607957
Chan DC (0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4	(pts) M 39 26 11 14 17 12 12 12 12 12 12	easured(v, 230.335 30 20 8 230.271 30 20 8 230.165 30 20		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106		.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838
Chan DC(0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4 11 4	(pts) M 39 26 11 14 17 12 12 12 12 12 12 12 12 12 12 12 12 12	easured(V, 230.335 30 20 8 230.271		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106 1.3498		.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838 .217181
Chan DC(0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4 11 4	(pts) M 39 26 11 14 17 12 12 12 12 12 12 12 12 12 12 12 12 12	easured(v, 230.335 30 20 8 230.271 30 20 8 230.165 30 20 8		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106 1.3498	calibrat	.1609614 .1612156 .2172534 .2169686 .1608649 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838 .217181
Chan DC(0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4 11 4 Equipmen Item #	(pts) M 39 26 11 14 17 12 12 12 12 12 12 12 12 12 12	easured(v, 230.335 30 20 8 230.271 30 20 8 230.165 30 20 8 instrument		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106 1.35106 1.3498 for this Ca	calibrat 1 date	.1609614 .1612156 .2172534 .2169686 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838 .217181
Chan DC(0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4 11 4 Equipmen Item #	(pts) M 39 26 11 14 17 12 12 12 12 12 12 12 12 12 12	easured(v, 230.335 20 230.271 30 20 20 8 230.165 30 20 8 instrument 0.10hms		1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106 1.3498 for this Ca 15 16 16	calibrat 1 date .02.2013 .02.2014	.1609614 .1612156 .2172534 .2169686 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838 .217181
Chan DC(0 3 1 2 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2 10 4 11 4 Equipmen Item # 1 2	(pts) M 9 26 11 14 17 12 12 12 12 12 12 12 12 12 12	easured(v, 230.335 20 230.271 30 20 20 8 230.165 30 20 8 instrument 0.10hms	ts used [.]	1.00039 1.00197 1.35025 1.34848 .99979 1.00025 1.35771 1.35525 1.00039 .99936 1.35106 1.3498 for this Ca 15 16 16	calibrat 1 date .02.2013 .02.2014	.1609614 .1612156 .2172534 .2169686 .1609389 .2184537 .2180579 .1609614 .1607957 .2173838 .217181

© CNS Inc.

Detailed harmonics & Flicker test data

The following pages illustrate details of the tests that were run to verify the accuracy and proper operation of the system. The tests included various harmonics patterns per Class-A, B, C and D of IEC61000-3-2, as well as Flicker tests per IEC 61000-3-3. Various screenshots were also done for IEC Standards 61000-4-11 and 61000-4-13. The detailed pages are produced by replaying the data files that were recorded during the actual system tests. The ideal values, along with the applied tolerance levels for this test are overlaid onto the CTS report page.

Page 9 shows a Class-A Pass test with page 10 a screenshot of the test.

Page 11 follows the same concept for the Class-A Fail test. As follows from pages 9 to 13 all harmonics are within a few mA of their ideal values. Permitted tolerance per IEC61000-3-2 is (1 % of the fundamental current + 10 mA), but the target accuracy used for the tests is (0.3 % + 5 mA). This approximately 3:1 safety ratio results for this test (2.3 A-rms fundamental) in a permitted tolerance of (7 mA + 5 mA) = 12 mA. The largest error is well within this tight tolerance, and thus an even smaller fraction of the actual tolerances permitted per IEC61000-3-2. Hence, the system performance is excellent.

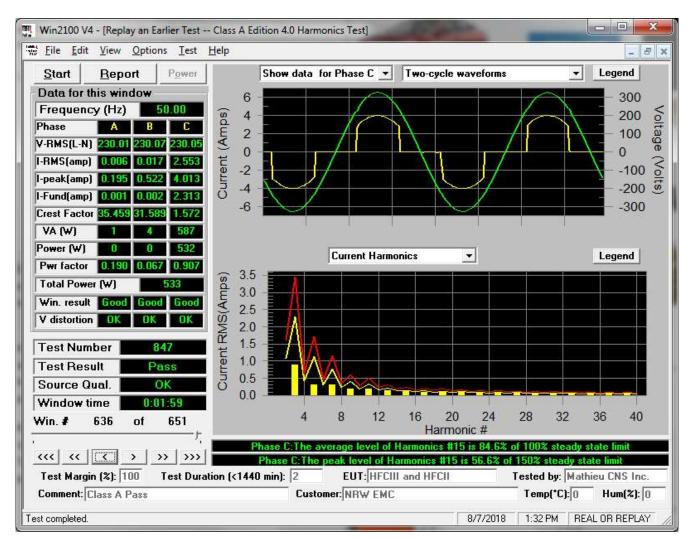
Pages 12 and 13 are data for a Class C test set to just pass the limits and a Class D test set to fail the limits.

Page 15 shows a screenshot of a flicker test of a modulation of 13.5Hz.

Pages 16 to 20 are various screenshots of tests for IEC61000-4-11 and IEC61000-4-13

Page 21 illustrates the regeneration function using three of Ametek's solar inverters.

Page 22 shows photos of the system as found and with new calibration stickers applied.


Detailed data for a Class-A PASS test

EUT: HFC	CIII and HFC					Tested by	: Mathieu CNS	inc.					
Γestcate	gory: Class	-A per Ed.	4.0 (2014)	(European	limits)	Test Marg	in: 100						
Γestdate	e: 7/19/2018	End time:	12:02:02 A	M		Start time	: 11:59:39 PM						
Γestdura	ation (min):	2				Data file r	name: H-00084	7.cts_data					
Commen	nt: Class A I	Pass											
Custome	r: NRW EM	С											
Test Res	ult: Pass	Sourc	e qualifica	tion: Norn	nal								
THC(A): 1	1.069 I-T	'HD(%): 46.	.1 PO	HC(A): 0.1	98 PO	HC Limit(A	A): 0.251						
	parameter v	/alues dur	ing test:										
/_RMS (V 230.07	Frequenc	y(Hz): 50.	00				THC-I	POHC				
_Peak (/	A 4.022	I_RMS (A	r 2.557					1.071	0.201				
_Fund (#	A 2.317	Crest Fac	1.574										
Power (V	V 533.3	Power Fa	0.907										
								Ideal	Min	Max	Limits	Pass/Fail	Percen
Harm#	Harms(av	100%Limi	%of Limit	Harms(ma	150%Limi	%of Limit	Status	2.3148	Toler	ance			of Limi
2	0.001	1.08	N/A	0.001	1.62	N/A	Pass	0.002	0.000	0.015	1.080	PASS	0
3	0.9	2.3	39.1	0.901	3.45	26.1	Pass	0.899	0.854	0.942	2.300	PASS	39.1
4	0.001	0.43	N/A	0.001	0.645	N/A	Pass	0.000	0.000	0.013	0.430	PASS	0
5	0.299	1.14	26.2	0.3	1.71	17.5	Pass	0.301	0.286	0.315	1.140	PASS	26.4
3	0.001	0.3	N/A	0.001	0.45	N/A	Pass	0.002	0.000	0.015	0.300	PASS	0
7	0.298	0.77	38.7	0.299	1.155	25.9	Pass	0.299	0.284	0.314	0.770	PASS	38.9
3	0.001	0.23	N/A	0.001	0.345	N/A	Pass	0.000	0.000	0.013	0.230	PASS	0
)	0.179	0.4	44.9	0.18	0.6	30.1	Pass	0.181	0.168	0.193	0.400	PASS	45.2
10	0.001	0.184	N/A	0.001	0.276	N/A	Pass	0.002	0.000	0.015	0.184	PASS	0
11	0.178	0.33	54	0.179	0.495	36.1	Pass	0.179	0.167	0.192	0.330	PASS	54.3
12	0.001	0.153	N/A	0.001	0.23	N/A	Pass	0.000	0.000	0.013	0.153	PASS	0
13	0.128	0.21	61.1	0.129	0.315	41.1	Pass	0.129	0.117	0.142	0.210	PASS	61.6
14	0.001	0.131	N/A	0.001	0.197	N/A	Pass	0.002	0.000	0.015	0.131	PASS	0
15	0.127	0.15	84.6	0.127	0.225	56.6	Pass	0.128	0.115	0.141	0.150	PASS	85.3
16	0.001	0.115	N/A	0.001	0.173	N/A	Pass	0.000	0.000	0.013	0.115	PASS	0
17	0.1	0.132	75.6	0.101	0.198	50.9	Pass	0.101	0.088	0.113	0.132	PASS	76.1
18	0.001	0.102	N/A	0.001	0.153	N/A	Pass	0.002	0.000	0.015	0.102	PASS	0
19	0.098	0.118	83	0.099	0.178	55.6	Pass	0.099	0.087	0.112	0.118	PASS	83.9
20	0	0.092	N/A	0.001	0.138	N/A	Pass	0.000	0.000	0.013	0.092	PASS	0
21	0.082	0.107	76.4	0.083	0.161	51.6	Pass	0.083	0.070	0.095	0.107	PASS	77.0
22	0.001	0.084	N/A	0.001	0.125	N/A	Pass	0.002	0.000	0.015	0.084	PASS	0
23	0.08	0.098	81.9	0.08	0.147	54.8	Pass	0.081	0.068	0.094	0.098	PASS	82.9
24	0	0.077	N/A		0.115	N/A	Pass	0.000	0.000	0.013	0.077	PASS	0
25	0.069	0.09	77	0.07	0.135	52	Pass	0.070	0.057	0.083	0.090	PASS	77.7
26	0.001	0.071	N/A	0.001	0.107	N/A	Pass	0.002	0.000	0.015	0.071	PASS	0
27	0.068	0.083	81.1	0.068	0.125	54.3	Pass	0.069	0.056	0.081	0.083	PASS	82.3
28	0	0.066	N/A	0.001	0.099	N/A	Pass	0.000	0.000	0.013	0.066	PASS	0
29	0.06	0.078	77.6	0.061	0.116	52.5	Pass	0.061	0.048	0.073	0.078	PASS	78.2
30	0.001	0.061	N/A	0.001	0.092	N/A	Pass	0.002	0.000	0.015	0.061	PASS	0
31	0.058	0.073	80.4	0.059	0.109	53.8	Pass	0.059	0.047	0.072	0.073	PASS	81.7
32	0	0.058	N/A	0.001	0.086	N/A	Pass	0.000	0.000	0.013	0.058	PASS	0
33	0.053	0.068	78	0.054	0.102	52.9	Pass	0.054	0.041	0.066	0.068	PASS	78.7
34	0.001	0.054	N/A	0.001	0.081	N/A	Pass	0.002	0.000	0.015	0.054	PASS	0
35	0.051	0.064	79.8	0.052	0.096	53.5	Pass	0.052	0.040	0.065	0.064	PASS	81.3
36	0	0.051	N/A		0.077	N/A	Pass	0.000	0.000	0.013	0.051	PASS	0
37	0.048	0.061	78.3		0.091	53.3	Pass	0.048	0.035	0.061	0.061	PASS	79.0
38	0.001	0.048	N/A		0.073	N/A	Pass	0.002	0.000	0.015	0.048	PASS	0
39	0.046	0.058	79.2		0.087	53.2	Pass	0.047	0.034	0.059	0.058	PASS	80.9
		0.046	N/A		0.069	N/A	Pass	0.000	0.000	0.013	0.046	PASS	0

Test data and ideal values for test no. 847 (Class-A Pass) showing only milli-Amperes difference between ideal and actual values. The leftmost 8 columns show the measurement data, and the rightmost 6 columns show the "ideal" data and permitted tolerances for this test. The measured harmonics are within 5 mA of their ideal values, and the deviations are only a fraction of the permitted tolerances used by CNS, and thus are less than 1/3rd of the permitted tolerances specified in IEC 61000-3-2. See next page for a screen shot of actual test.

© CNS Inc.

The above figure shows a test pattern with the non-linear load set to 45 – 135 degrees, and configured to pass the Class-A test The harmonics and the comparison vs. the ideal values is shown on the previous page (9), and illustrates that the system operates within a fraction of the harmonics tolerances mentioned earlier in this report.

Similar tests results were obtained for Class-B, C and Class-D test patterns. The observed deviations were in the \pm 3 to 4 mA range, where acceptable tolerances per IEC 61000-3-2 are in the order of \pm 25 – 30 mA.

Detailed data for a Class-A FAIL test

				e A-Replay									
EUT: HFCI	II and HFCII					Tested by	: Mathieu CN	S Inc.					
		per Ed. 4.0	(2014) (Eu	ropean limits)	Test Marc							
	7/20/2018	End time:					: 12:03:07 AM						
	ion (min): 2						name: H-00084	8.cts data					
	: Class A Fai	l Phase A											
	NRW EMC												
Test Resul	lt: Fail	Source qua	lification:	Normal									
THC(A): 1.		(%): 46.2		A): 0.248	POHC Lin	nit(A): 0.2	51						
• •	arameter valı olt: 229.94	Jes during Frequency		00				THC-I	РОНС				
Peak (A		I_RMS (Ar		00				1.340	0.251				
_Feak (Ai	•	Crest Fac						1.340	0.201				
Power (W		Power Fa											
Power (W	all: 000.4	Fowerra	0.907					Ideal	Min	Мах	Limits	Pass/Fail	Percen
Harm#	Harme(a)	100%l imi	% of Limit		150% imi	% of Limit	Statuc	2.895		rance	Linnis	rass/rall	of Limi
Harm# 2	0.002		%OT LIMIT	Harms(max) 0.002		%of Limit		0.002	0.000	0.017	1.080	PASS	Of LIMI
2 3	1.125		N/A 48.9	1.126	1.62 3.45	N/A 32.6	Pass Pass	1.125	1.069	1.178	2.300	PASS	48.9
3 4	0.001		48.9 N/A	1.126 0.001	3.45 0.645		Pass	0.000	0.000	0.015	0.430	PASS	48.9
4 5	0.001		N/A 32.8	0.001	0.645	N/A 21.9	Pass Pass	0.000	0.000	0.015	1.140	PASS	33.0
5 6	0.373		32.8 N/A	0.374	0.45	21.9 N/A	Pass Pass	0.376	0.357	0.394	0.300	PASS	<u> </u>
o 7			N/A 48.5	0.001	0.45						0.300	PASS	48.6
	0.373				0.345	32.4	Pass	0.374	0.356	0.392		PASS	40.0
8 9	0.001		N/A	0.001		N/A	Pass	0.000	0.000	0.015	0.230		
-	0.224		56.1	0.225	0.6	37.4	Pass	0.226	0.211	0.241	0.400	PASS	56.5
10	0.001		N/A	0.001	0.276	N/A	Pass	0.002	0.000	0.017	0.184	PASS	0
11	0.223		67.6	0.224	0.495	45.2	Pass	0.224	0.210	0.239	0.330	PASS	68.0
12	0.001		N/A	0.001	0.23	N/A	Pass	0.000	0.000	0.015	0.153	PASS	
13	0.16		76.4	0.161	0.315	51	Pass	0.162	0.147	0.176	0.210	PASS	77.0
14 15	0.001		N/A	0.001	0.197	N/A 70.8	Pass	0.002	0.000	0.017	0.131	PASS	0 106.6
	0.159		105.9	0.159	0.225		Fail	0.160				Fail	
16	0.001		N/A	0.001	0.173	N/A	Pass	0.000	0.000	0.015	0.115	PASS	0
17	0.125		94.6	0.125 0.001	0.198	63.3 N/A	Pass	0.126	0.111	0.141	0.132	PASS PASS	95.2
18			N/A		0.153		Pass	0.002	0.000	0.017			
19	0.123		103.9	0.124	0.178	69.5	Fail	0.124	0.110	0.139	0.118	Fail	104.9
20	0.001		N/A	0.001	0.138	N/A	Pass	0.000	0.000	0.015	0.092	PASS	0
21	0.102		95.6	0.103	0.161	64.2	Pass	0.103	0.089	0.118	0.107	PASS	96.3
22	0.001		N/A	0.001	0.125	N/A	Pass	0.002	0.000	0.017	0.084	PASS	0
23	0.1		102.5	0.101	0.147	68.7	High	0.101	0.087	0.116	0.098	Fail	103.7
24	0.001		N/A	0.001	0.115	N/A	Pass	0.000	0.000	0.015	0.077	PASS	0
25	0.087		96.5	0.087	0.135	64.5	Pass	0.087	0.073	0.102	0.090	PASS	97.2
26	0.001		N/A	0.001	0.107	N/A	Pass	0.002	0.000	0.017	0.071	PASS	0
27	0.085		101.5	0.085	0.125	68	High	0.086	0.071	0.100	0.083	Fail	102.9
28	0.001		N/A	0.001	0.099	N/A	Pass	0.000	0.000	0.015	0.066	PASS	0
29	0.075		97.2	0.076	0.116	65.1 N/A	Pass	0.076	0.061	0.091	0.078	PASS	97.8
30	0.001		N/A	0.001	0.092	N/A	Pass	0.002	0.000	0.017	0.061	PASS	0
31	0.073		100.6	0.074	0.109	67.5	High	0.074	0.060	0.089	0.073	Fail	102.2
32	0.001		N/A	0.001	0.086	N/A	Pass	0.000	0.000	0.015	0.058	PASS	0
33	0.067		97.8	0.067	0.102	65.5	Pass	0.067	0.052	0.082	0.068	PASS	98.4
34	0.001		N/A	0.001	0.081	N/A	Pass	0.002	0.000	0.017	0.054	PASS	0
35	0.064		100	0.065	0.096	67.1	High	0.065	0.051	0.080	0.064	Fail	101.7
36	0.001		N/A	0.001	0.077	N/A	Pass	0.000	0.000	0.015	0.051	PASS	0
37	0.06		98.3	0.06	0.091	65.8	Pass	0.060	0.046	0.075	0.061	PASS	98.9
38	0.001		N/A 99.3	0.001 0.058	0.073 0.087	N/A	Pass	0.002	0.000	0.017	0.048	PASS	0 101.2
39						66.8	Pass	0.058	0.044		0.058	Fail	

As the above data shows, the Class-A FAIL test yields the expected result, and the harmonics are very close to the ideal values.

Detailed data for Class-C Pass Test

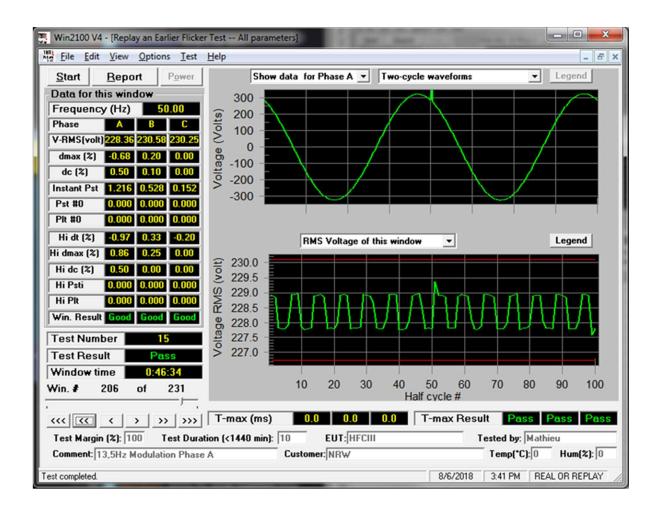
EUT: HF	CIII and HFC)II				Tested by	: Mathieu CNS	Inc.					
Test cat	egory: Class	-C per Ed.	4.0 (2014)	(European	limits)	Test Marg	jin: 100						
Test dat	e: 7/20/2018	End time:	12:09:19 A	ŇM.		Start time	: 12:06:57 AM						
Test dur	ation (min):	2				Data file I	name: H-000849	9.cts_data					
Comme	nt: Class C	Pass Phas	e A										
Custome	er: NRW EM	С											
Test Res	sult: Pass (P	OHC fail)	Sourc	ce qualific	ation: Nor	mal							
THC(A):	0.113 I-T	HD(%): 16.	4 PO	HC(A): 0.0	27 PO	HC Limit(A	A): 0.065						
Highest	parameter v	alues dur	ing test:										
V_RMS	(V 230	Frequenc	y(Hz): 50.	00				THC-I	POHC	PF	I-fund		
I_Peak (A 1.023	I_RMS (Ar	0.7					0.113	0.027	0.982	0.689		
I_Fund (A 0.69	Crest Fac	1.464										
Power (W 158.1	Power Fa	0.983										
								Ideal	Min	Max	Limits	Pass/Fail	Percent
Harm#	Harms(av	100%Limi	% of Limit	Harms(ma	150%Limi	%of Limit	Status	0.689	Toler	rance			of Limit
2	0	0.014	N/A	0	0.021	N/A	Pass	0.000	0.000	0.007	0.014	PASS	0
3	0.064	0.204	31.3	0.064	0.305	20.9	Pass	0.063	0.056	0.070	0.203	PASS	30.9
4	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
5	0.057	0.069	83.1	0.057	0.103	55.4	Pass	0.057	0.050	0.064	0.069	PASS	83.0
6	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
7	0.047	0.048	97.3	0.047	0.072	65	Pass	0.047	0.040	0.054	0.048	PASS	98.1
8	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
9	0.034	0.034	97.3	0.034	0.052	64.9	Pass	0.034	0.027	0.041	0.034	PASS	98.7
10	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
11	0.02	0.021	98	0.02	0.031	65.4	Pass	0.021	0.013	0.028	0.021	PASS	99.3
12	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
13	0.014	0.021	66.3	0.014	0.031	44.3	Pass	0.014	0.007	0.021	0.021	PASS	66.2
14	0	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
15	0.016	0.021	76.4	0.016	0.031	51.3	Pass	0.016	0.009	0.023	0.021	PASS	76.8
16	0	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
17	0.017	0.021	83.5	0.017	0.031	55.8	Pass	0.017	0.010	0.025	0.021	PASS	84.7
18	0	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
19	0.015	0.021	71.4	0.015	0.031	47.7	Pass	0.015	0.008	0.022	0.021	PASS	72.5
20	0	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
21	0.01	0.021	48.9	0.01	0.031	32.9	Pass	0.010	0.003	0.017	0.021	PASS	49.3
22	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
23	0.008	0.021	39.3	0.008	0.031	26.3	Pass	0.008	0.001	0.015	0.021	PASS	39.2
24	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
25	0.01	0.021	48.5	0.01	0.031	32.4	Pass	0.010	0.003	0.017	0.021	PASS	48.9
26	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
27	0.011	0.021	52.4	0.011	0.031	35	Pass	0.011	0.004	0.018	0.021	PASS	53.3
28	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
29	0.009	0.021	43.8	0.009	0.031	29.3	Pass	0.009	0.002	0.016	0.021	PASS	44.5
30	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
31	0.006	0.021	30.6	0.006	0.031	20.5	Pass	0.006	-0.001	0.013	0.021	PASS	30.6
32	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
33	0.006	0.021	29.5	0.006	0.031	19.9	Pass	0.006	-0.001	0.013	0.021	PASS	29.6
34	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
35	0.008	0.021	37	0.008	0.031	24.8	Pass	0.008	0.001	0.015	0.021	PASS	37.6
36	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
37	0.008	0.021	37.8	0.008	0.031	25.4	Pass	0.008	0.001	0.015	0.021	PASS	38.5
38	0	0	N/A	0	0	N/A	Pass	0.000	0.000	0.007	n/l	PASS	0
39	0.006	0.021	29.9	0.006	0.031	20	Pass	0.006	-0.001	0.013	0.021	PASS	30.2

For the above test data, the HFC-III harmonics & Flicker calibrator was set to produce current harmonics that are just below the limits. The system properly evaluates this test, with harmonic levels deviating no more than 2 mA from the ideal values.

Detailed data for Class-D FAIL test

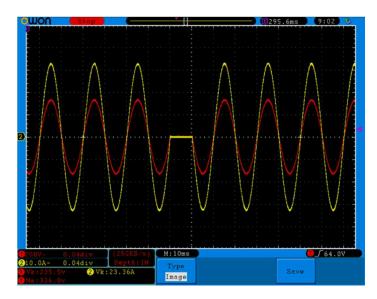
Currer	nt Test Re	sult Sum	mary (Pł	nase B-R	eplay)								
	CIII and HF			-		-	: Mathieu CNS	S Inc.					
	egory: Class		. ,	· ·	limits)	Test Marg							
	te: 7/20/2018		12:13:25 A	AM			: 12:11:03 AM						
	ration (min):		_			Data file i	name: H-00085	0.cts_data					
	nt: Class D		B										
Custom	er: NRW EN	IC											
		-											
	sult: Fail			ion: Norm									
THC(A):	0.332 1-	FHD(%): 77.	.6 PO	HC(A): 0.0	63 PO	HC Limit(A	A): 0.041						
								_					
-	parameter		•	00				THO	DOUIO	Durin			
-	(V 230.09		y(Hz): 50.	.00				THC-I	POHC	Pwr	I-THD		
-	(A 1.486	I_RMS (A						0.331	0.063	95.75	77.5%		
I_Fund		Crest Fac						_					
Power (VV 96.1	Power Fa	0.769					Ideal	Min	Max	Linelée	Deee/Feil	Davaant
Uarm#	La rma/a	1000/1 im-1	% of Lim!4	Harme(m-	1500/1 im-1	% of Lim!4	Statue	Ideal	Min	Max	Limits	Pass/Fail	Percent
Harm# 2	Harms(av	1	%of Limit	Harms(ma				0.427		ance	N/A	PASS	of Limit
3	0.286	0 0.327	N/A 87.5	0.001	0 0.49	N/A 58.4	Pass Pass	0.000	0.000	0.007	N/A 0.326	PASS	87.6
	0.286	0.327			0.49			0.285	0.271	0.299			87.6 0
4 5	0	0 0.183	N/A 50.3	0.001	0 0.274	N/A 33.6	Pass Pass	0.000	0.000	0.007	N/A 0.182	PASS PASS	
5 6	0.092	0.183	50.3 N/A	0.092	0.274	33.6 N/A	Pass Pass	0.091	0.085	0.098	0.182 N/A	PASS	50.3
0 7	-	1.4			0.144	38.2					0.096	PASS	
8	0.055	0.096	57.1 N/A	0.055	0.144	38.2 N/A	Pass	0.055	0.049	0.062	0.096 N/A	PASS	57.6
o 9				0.001			Pass	0.000	0.000		0.048		
9 10	0.085	0.048 0	176.7 N/A	0.085	0.072	117.9	Fail	0.085	0.078	0.092	0.048 N/A	Fail	177.4 0
				0.001	0	N/A	Pass	0.000	0.000	0.007		PASS	
11	0.033	0.034 0	97.8	0.033	0.05 0	65.5 N/ A	Pass	0.033	0.026	0.039	0.034	PASS	97.5
12	-	1.4	N/A	0.001	-	N/A	Pass	0.000	0.000	0.007	N/A	PASS	0
13 14	0.034	0.029	117.2 N/A	0.034	0.043	79.4 N/A	Fail	0.034	0.027	0.041	0.028 N/A	Fail	120.2 0
	-	-		0.003	0		Pass	0.000	0.000	0.007		PASS	
15	0.05	0.025 0	200.6	0.051	0.037 0	135 N/A	Fail	0.050	0.044	0.057	0.025	Fail	204.2 0
16	0.018	0.022	N/A 82.2	0.001	0.033	N/A 59.7	Pass	0.000	0.000	0.007	N/A 0.022	PASS	82.8
17	0.018	0.022				59.7 N/A	Pass	0.018	0.011	0.025		PASS	
18		0.02	N/A 129.8	0.001	0 0.029		Pass	0.000	0.000	0.007	N/A	PASS	0
19 20	0.025	0.02		0.027	0.029	92.4 N/A	Fail Pass	0.026	0.019	0.032	0.019	Fail	131.8
	-	-	N/A		-			0.000	0.000	0.007	N/A	PASS	0
21 22	0.035	0.018 0	200.8	0.036	0.026 0	137.2 N/A	Fail Pass	0.035	0.029	0.042	0.018 N/A	Fail PASS	201.6 0
22	0.011	0.016	N/A 71.5	0.001 0.012	0.024	N/A 49.1	Pass Pass	0.000	0.000	0.007	0.016	PASS	70.4
23 24	0.011	0.016	71.5 N/A	0.012	0.024	49.1 N/A	Pass	0.011	0.005	0.018	0.016 N/A	PASS	0.4
24 25	0.021	0.015	N/A 139.7	0.001	0.022	93.7	High	0.000	0.000	0.007	0.015	Fail	142.0
25 26	0.021	0.015	N/A	0.021	0.022	93.7 N/A	Pass	0.021	0.014	0.028	0.015 N/A	PASS	0
26 27	0.027	0.014	N/A 196.8	0.001	0.021	N/A 131.7	Fail	0.000	0.000	0.007	0.014	Fail	198.5
27 28	0.027	0.014	N/A	0.027	0.021	N/A	Pass	0.027	0.020	0.034	0.014 N/A	PASS	0
28 29	0.008	0.013	N/A 60.1	0.001	0.019	N/A 40.7	Pass	0.000	0.000	0.007	0.013	PASS	59.0
29 30	0.008	0.013	N/A	0.008	0.019	40.7 N/A	Pass	0.007	0.001	0.014	0.013 N/A	PASS	59.0
30 31	0.018	0.012	N/A 148.9	0.001	0.018	100	High	0.000	0.000	0.007	0.012	Fail	151.3
31	0.018	0.012	148.9 N/A	0.018	0.018	100 N/A	Pass		0.011	0.025	0.012 N/A	PASS	0
32 33	0.022	0 0.011	N/A 194.9	0.001	0 0.017	N/A 130.6	Pass Fail	0.000	0.000		0.011		194.8
33 34	0.022	0.011		0.022	0.017	130.6 N/A				0.028	0.011 N/A	Fail PASS	194.8 0
34 35	0.005	0.011	N/A 49.9			N/A 34	Pass	0.000	0.000				
				0.005	0.016		Pass	0.005	-0.002	0.012	0.011	PASS	48.6
36	0	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	N/A	PASS	0
37	0.016	0.01	156.6	0.016	0.015	105.3	Fail	0.016	0.009	0.023	0.010	Fail	159.8
38	-	0	N/A	0.001	0	N/A	Pass	0.000	0.000	0.007	N/A	PASS	0
39	0.018	0.01	188.9	0.018	0.014	127.4	Fail	0.018	0.011	0.025	0.009	Fail	190.4

For the above test data, the HFC-III harmonics & Flicker calibrator was set to produce current harmonics that are well above the Class-D limits. The system properly evaluates this test, with harmonic levels deviating no more than 2 mA from the ideal values.


Curren	t Test Res	sult Sum	mary (Phas	e A-Repl	ay)			
FIIT: HE(CIII & HFCII				Tested by:	Mathiou C	NS Inc.	
			22 Junto a Marca	-			NS IIIC.	
			33, Inter-Harn	1,	Test Margi			
			12:47:05 PM			12:45:00 F		
	ation (min):		-		Data file na	ame: CTSIV	IXH_H-000	029.cts_da
	nt: Table 2		Α					
Custome	r: NRW-EM	С						
Test Res	u Measured	Source: 1	lormal					
THC/Iref	(%): 8.1	Limit (%):	23.0 PW	HC/Iref (%):	0.0 F	WHC Lim	it(%): 23.0)
Highest p	parameter \	alues duri	ing test:					
V RMS (V 228.59	Frequenc	y (Hz): 50.00					
Peak (A		I RMS (Ar	19.529					
	A19.437(avg							
Power (V		Power Fa						
Harm#	Harmelaw	100%Limit	%of Limit	Harmelma	150%Limit	%of Limit	Statue	
	nannalav	100 MEIIIII	Sor Linit	namajine	100 MEIIIII	and child	Juna	
	2	0.016	1.561	1.1	0.018	2.341	0.8	Pass
	3	1.379	4.214	32.7	1.38	6.32	21.8	Pass
	4	0.012	0.78	1.5	0.012	1.17	1.1	Pass
	5	0.462	2.087	22.1	0.462	3.131	14.8	Pass
	6	0.008	0.52	1.6	0.009	0.78	1.2	Pass
	7	0.449	1.405	32	0.45	2.107	21.3	Pass
	8	0.009	0.39	2.4	0.01	0.585	1.7	Pass
	9	0.266	0.741	35.9	0.266	1.112	23.9	Pass
	10	0.008	0.312	2.6	0.008	0.468	1.8	Pass
	11	0.276	0.605	45.7	0.277	0.907	30.5	Pass
	12	0.009	0.26	3.3	0.009	0.39	2.4	Pass
	13	0.196	0.39	50.3	0.197	0.585	33.7	Pass
	14	0.008	N/A	N/A	0.008	N/A	N/A	N/A
	15	0.188	N/A	N/A	0.189	N/A	N/A	N/A
	16	0.008	N/A	N/A	0.009	N/A	N/A	N/A
	17	0.144	N/A	N/A	0.144	N/A	N/A	N/A
	18	0.007	N/A	N/A	0.008	N/A	N/A	N/A
	19	0.153	N/A	N/A	0.154	N/A	N/A	N/A
	20 21	0.008	N/A	N/A	0.008	N/A	N/A	N/A
		0.124	N/A	N/A	0.125	N/A	N/A	N/A
	22	0.007	N/A	N/A	0.008	N/A	N/A	N/A
	23	0.118	N/A	N/A	0.118	N/A	N/A	N/A
	24	0.007	N/A	N/A	0.008	N/A	N/A	N/A
	25	0.097	N/A	N/A	0.098	N/A	N/A	N/A
	26	0.007	N/A	N/A	0.007	N/A	N/A	N/A
	27	0.106	N/A	N/A	0.107	N/A	N/A	N/A
	28	0.007	N/A	N/A	0.008	N/A	N/A	N/A
	29	0.091	N/A	N/A	0.092	N/A	N/A	N/A
	30	0.007	N/A	N/A	800.0	N/A	N/A	N/A
	31	0.086	N/A	N/A	0.087	N/A	N/A	N/A
	32	0.007	N/A	N/A	0.008	N/A	N/A	N/A
	33	0.074	N/A	N/A	0.075	N/A	N/A	N/A
	34	0.008	N/A	N/A	0.008	N/A	N/A	N/A
	35	0.082	N/A	N/A	0.082	N/A	N/A	N/A
	36	0.002	N/A	N/A	0.002	N/A	N/A	N/A
	37	0.000	N/A	N/A	0.000	N/A	N/A	N/A
	38	0.009	N/A	N/A	0.01	N/A	N/A	N/A
	39	0.068	N/A	N/A	0.068	N/A	N/A	N/A
	40	0.006	N/A	N/A	0.006	N/A	N/A	N/A

Profline System Calibration, xxxxxx– Dortmund, July. 2018 14 of 22

Flicker screen shot

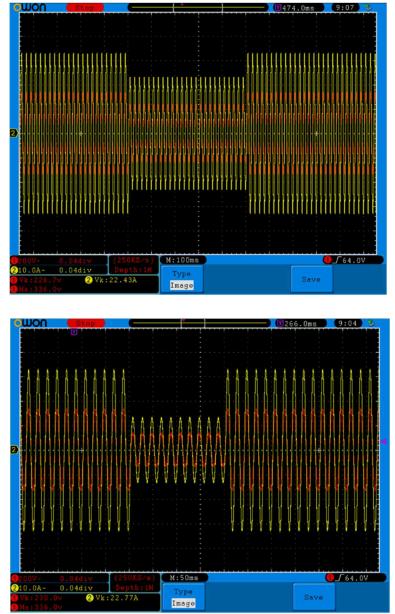

The screen shot below shows one of the Flicker test patterns, with the modulation set to 13.5 Hz, and the modulation percentage set to 0.5 % which ideally would result in a Pst level of 1.209. The measured Pst for Phase A is 1.212 i.e. the deviation is 0.6 %, which is less than $1/4^{th}$ of the permitted tolerance of ± 8 %.



Test patterns per IEC 61000-4-11

This page shows oscilloscope shots that were recorded during the tests per IEC 61000-4-11, with typical patterns for Class-2, per Table-1 of the standard, for a nominal voltage of 230 V rms, 50 Hz.

Half cycle dropout to '0" volt

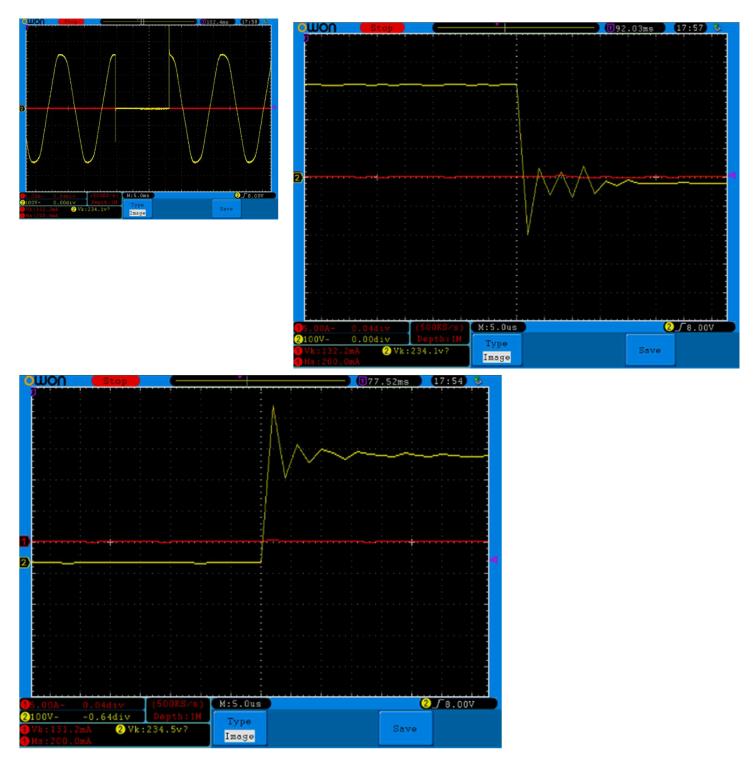


1	cycle	dropout	to "0" volt
---	-------	---------	-------------

IEC 6100-4-11 data	
50 Hz 0.5 cycle	Actual
target value 10 ms	10.0 ms
60 Hz 1 cycle	Actual
target value 16.67 ms	16.7 ms
	Actual
60 Hz 25 cycles @ 70 %	70.5 %
Target values	25.0 cycles
	Actual
60 Hz 10 cycles @ 40 %	40.2 %
Target values	25.0 cycles
	Actual
60 Hz rise/fall times	2.5 μS
Target values1-5 μS	
	Actual
60 Hz 1 cycle @	90 deg
90ndeg.	

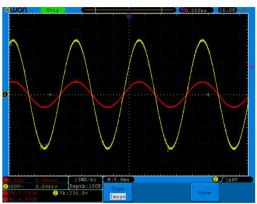
© CNS Inc.

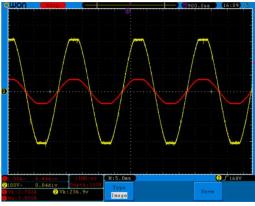
70 % remaining voltage for 25 cycles per Class-2 Table1 of


IEC61000-4-11

40 % remaining voltage for 10 cycles

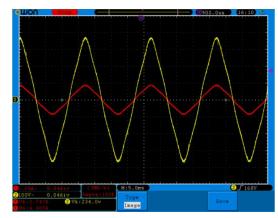
© CNS Inc.


Below are screenshots of a 1 cycle drop out at 90 degrees with a rise and fall time within 1-5 microseconds. These tests were done using the NSG2200-3 switch, at 60 Hz.



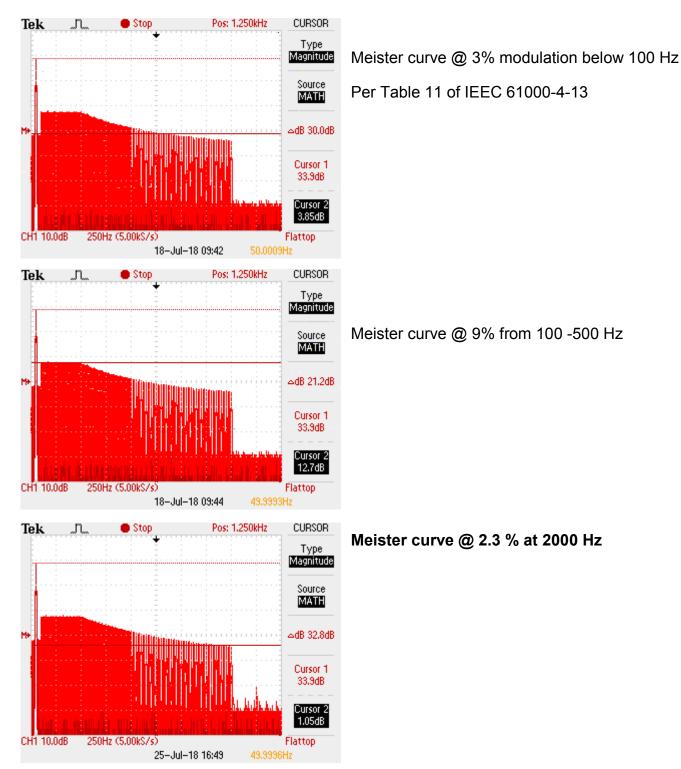
Test patterns per IEC 61000-4-13

This page and the next show a series of oscilloscope shots with test patterns per IEC 61000-4-13, including tests per the so-called Meister curve.



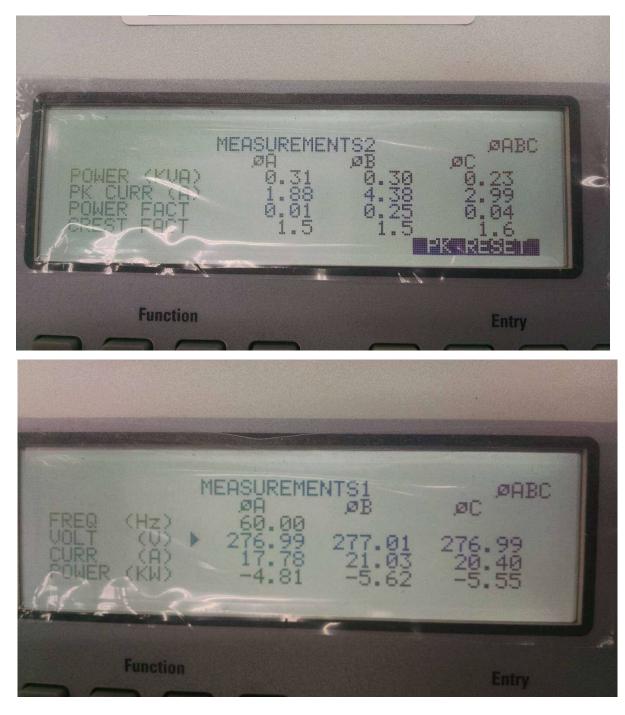
The test starts with a sine wave at nominal 230 V rms.

The flat top waveform per Class-2


IEC61004-13 data	
Flat top - Class 2	Actual
Target value 230 V rms	230.4 V rms
Overswing Class 2	Actual
Taget value 230 Vrms	230.2 V rms
Modulation < 100 Hz	Actual
Target value 3 %	3.16%
Modulation 100-500 Hz	Actual
Taget value 9 %	8.70%
Modulation @ 2000 Hz	Actual
Target valuua 2.25 %	2.30%

The "over-swing" waveform per Class-2.

© CNS Inc.


Test patterns per IEC 61000-4-13 cont.

Profline System Calibration, xxxxxx- Dortmund, July. 2018 20 of 22

Regeneration verification

For this test3 Solar inverters were connected, one to each Phase. The top photo shows the initial stage with virtually no load. The second picture shows the "negative" power, i.e. the power generated by the inverters that is fed back into the power source.

Profline System Calibration, xxxxxx- Dortmund, July. 2018 21 of 22

© CNS Inc.

Photos showing the overall system during calibration, and a detail shot of the new calibration sticker on the power source.

End of Calibration & Verification Report

Xxxxxxx – Dortmund, July 2018

Profline System Calibration, xxxxxx- Dortmund, July. 2018 22 of 22